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Abstract. We propose a deterministic approach to lattice diffusion in two dimensions. This 
method is implemented on a cellular automaton special purpose computer in order to 
study the properties of the interface of particles diffusing from a source to a sink. Fractal 
properties of the diffusion front of this non-equilibrium process are compared with results 
from percolation theory. The observed agreement indicates that diffusion fronts and 
gradient percolation coincide asymptotically and that the cellular automata method is a 
viable alternative to standard simulations for this class of problems. 

1. Introduction 

Most solid interfaces observed in nature are irregular or rough. The geometrical 
properties of such interfaces are of great importance to materials science. One useful 
way to generate interfaces that are rough on all length scales is by diffusion processes, 
describing for example the situation when two solid interfaces are brought into contact. 
Practical examples where interfaces play an important role are solid-solid chemical 
reactions, alloys formed out of the melt and of course many processes in solid state 
technology [ 1,2]. Other fields where such interfacial properties are directly relevant 
are catalysis, corrosion and crystal growth [3] and the physics of superionic conduction 
[4 and references therein]. A different domain where fractal interfaces occur naturally 
is invasion percolation of a porous medium [ 5 ] .  

This motivates us to study the out-of-equilibrium properties of diffusion and in 
particular the fractal interfaces generated by this process. There is one specific experi- 
ment that is particularly closely related to the present work: silver is deposited on a 
polyamide film in such a way that the average silver concentration varies in one 
direction [ 6 ] .  The silver deposits have been analysed for their fractal structure. It was 
found that the hull of the connected silver patches is fractal with a fractal dimension 
that is in good agreement with theoretical predictions. 

There is a second, more formal reason for studying non-equilibrium diffusion: a 
close relation exists between diffusion in a concentration gradient for small gradients 
and standard site percolation [7]. Therefore, diffusing particles in a gradient provide 
an ideal means to compute percolation properties, notably the percolation threshold 
p c  and the fractal dimension characterising large clusters [8]. The principal advantage 
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of using gradients for percolation problems is that one does not have to know or guess 
the p c  in advance; the gradient method determines it self-consistently [7- 101. 

Actual diffusion of particles is a time-consuming process. For purely static proper- 
ties, such as percolation, one can short-cut the diffusion process by simply distributing 
particles randomly, but inhomogeneously. One expects that the asymptotic results are 
the same. However, for a finite concentration gradient there are differences due to the 
hard core exclusion of the particles. This interaction leads to long-range correlations 
[ 111. Furthermore, in realistic diffusion processes there are additional attractive or 
repulsive interactions that may change the results qualitatively. For example, a 
sufficiently strong attraction can induce a dynamical phase transition to an ordered 
state [12]. 

In the present work we propose a formulation of a random diffusion process with 
a hard core repulsion in terms of a deterministic cellular automaton (CA).  This model 
is particularly suited to be implemented on a special purpose computer with parallel 
architecture. 

Our reasons for studying the problem of gradient diffusion by a CA are as follows. 
(1) There are non-trivial exact results that permit us to test the validity of the determinis- 
tic approach. (2) The fractal properties of diffusion fronts have not been investigated 
by a real diffusion process-previous calculations use the above-mentioned short cut. 
(3) Percolation results suggest that the properties of the front depend on how it' is 
defined [13]. We wish to investigate whether these properties remain valid for a true 
diffusion process. 

Our results show that random diffusion can accurately and efficiently be imple- 
mented as a cellular automaton. We have chosen to adapt the algorithm to a CAM-6 
[ 141 special purpose computer, but it is straightforward to transpose such an algorithm 
to another machine. The statistics of most of our results obtained by this method is 
comparable to a standard serial algorithm. Furthermore even for moderately small 
gradients there is good convergence toward the asymptotic zero gradient limit which 
indicates that the correlations do disappear sufficiently rapidly in order not to change 
the expected percolation results. Finally we observe that diffusion fronts also have 
the same fractal features as percolation: the different definitions of the external 
perimeter or hull yield different fractal exponents. 

The paper is organised as follows. In 0 2, we briefly review the known theoretical 
results for two-dimensional diffusion on a lattice. Section 3 is devoted to the cellular 
automata implementation. The validity of this CA approach is tested against known 
theoretical results. Then, the properties of the diffusion fronts are studied in 0 4. 
Conclusions are drawn in P 5 .  

2. Some properties of non-equilibrium diffusion models 

In this work we consider lattice diffusion on a two-dimensional square lattice. It tums 
out that some properties measured, such as the scaling of the concentration profile, 
generalise to other dimensions [15] while others, such as the fractal aspects of the 
diffusion fronts, are specially two dimensional. Indeed, because of the different 
topology the conclusions are known to be different in three dimensions [ 161. 

The diffusion process studied here is the nearest-neighbour Kawasaki spin exchange 
model at infinite temperature in lattice gas language [17]: particles sit on lattice sites 
and jump randomly and with equal probability to any of their unoccupied neighbouring 
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sites. No two particles can ever occupy the same site. The jump rates of the different 
particles in the system are totally uncorrelated. In the present calculation neither 
attractive nor repulsive additional forces are included. 

In order to study the out-of-equilibrium dynamics, we consider a system with a 
linear perfect source at z = 0 which replaces immediately the particles diffusing into 
the system and a linear sink at z = L, which removes the arriving particles. In the 
perpendicular direction, the system has a size L, with periodic boundary conditions. 
At time t = O  the system is completely empty. Although the diffusion process does 
conserve the number of particles inside the system, the total number still changes 
because of the source and the sink. 

From the master equation governing this diffusion process an evolution equation 
for the average profile P(z, t )  can be derived in the continuum limit. Here P(z, t )  is 
defined as the average concentration at z and at time t ,  namely P = 1/ L,(Z, n ( y ,  z)) 
where n ( y ,  z )  = 0 , l  is the occupation number on site ( y ,  z). The average ( . . . ) is a 
statistical average over realisations. We only consider systems that are homogeneous 
in the y direction. For the general case of interacting particles the evolution equation 
for P is coupled to the equations for the higher-order correlation functions [18]. The 
set of equations uncouples for a pure hard core repulsion and P obeys a simple 
diffusion equation [19]. Given the boundary and the initial conditions, this equation 
can be solved exactly, yielding the solution 

P(z, t )  =--- L,-z f A s i n ( n r j j e x p (  - n  v .'"> 7 
L, 7 ~ , , = ]  n L ,  

where D is the diffusion constant. In particular, the stationary density profile is given 
by the infinite-time limit of the above equation, and is thus obviously linear. In the 
limit L, + CO, the above solution reduces to 

z/2" 

P(z, t )  = 1 -- du exp(-U'). (2) 
G o  'I 

This solution has an interesting scaling property. In terms of the average position i( t )  
defined by 

one has 

with 

Thus, the time dependence enters only through the diffusion length I,= 2m = 
( 4 / G ) Z .  In the finite geometry of our system this solution is valid for 1 << ID<< L,, L,. 

Let us now introduce the diffusion front. The connectivity of the particles is defined 
as in site percolation: any two particles sitting on nearest-neighbour sites belong to 
the same cluster. For percolation a threshold pc separates a region where only finite 
clusters are present from the region where an infinite cluster occupies a finite fraction 
of the system. In our model, p varies from p = 0 to p = 1 across the sample such that 
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the finite cluster and the infinite cluster regimes are present simultaneously. Close to 
the source p > p c  and one cluster spans the system. Close to the sink p < p c  and only 
finite clusters are present. In a weak gradient large finite clusters have the structure 
of percolation clusters and are located near p c .  This provides a way to calculate p c .  
However, it is more efficient to obtain pc from the front of the infinite cluster [lo]. 

More precisely, the diffusion front, also called external perimeter or hull is defined 
as follows. 

(1) Determine the infinite cluster (‘the land’) as all the particles which are connected 
to the source by nearest-neighbour particle-particle bonds. 

(2) The complementary infinite cluster (‘the ocean’) consists of those empty sites 
which are connected by nearest- or next-to-nearest-neighbour empty-empty bounds 
to the sink. 

( 3 )  One then finds the land point farthest from the source. Starting from this point, 
the hull H1 (‘the shore’) is constructed as the line of first-neighbour particle-particle 
bonds such that each particle of the hull has a least one ‘ocean’ point as a first neighbour. 
This is illustrated in figure 1 (a). 

0 0 0 ~ 0 0 0 0 0 0  

0 0 0 0 0  

0 0 0 ~ 0 0 0 0 0 0  

0 0 0 0 0  

( b l  

Figure 1. Construction of the diffusion fronts. The 
fronts H1, H2 and H3 are shown in ( a ) ,  ( b )  and ( c )  
respectively. 

Different hulls can be defined by changing rule (3) above [12]; here two other hulls 
are defined by starting again from the farthest particle, and excluding those bays which 
are connected to the ocean only by a narrow channel. 

( 3 a )  The hull H2 excludes the bays which are bridged by second-nearest-neigh- 
bours, i.e. a step of length 4. This is illustrated in figure l ( b ) .  

( 3 b )  The hull H3 excludes the bays which are bridged by steps of length 2 .  This 
is illustrated in figure l (c ) .  

As the diffusion progresses the gradient of the average concentration decreases. 
More precisely, at fixed p, the gradient scales like V P  = dP/dz  = (d$/dz)/f  Corre- 
spondingly, the diffusion fronts increase their widths. Their average position zr then 
determines pc through pc = P(z,( t ) ,  t ) .  The relation between the number Nf of particles 
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in the front and its width U defines the hull dimension DH. The relevant definitions 
are: Pf(z, t )  is the average density of hull points at z at time t, analogous to the density 
of all points P ( z ,  t )  defined above. From Pr, the total number of front points Nf is 
given by 

N , ( t )  = lom Pf(z, t )  dz. 

The average front position zf is defined by 

and the width of the front U is given by 

v2 = loa ( z - zf )' Pf ( z, t ) dz ( loE Pr( z, t ) d r ) -' . 
The value of p c  for finite t is expected to extrapolate to the exact p c  as ?+a. The 
scaling laws Nf-(VP)-"v and u - ( V P ) - * -  define the exponents a N  and a,. 
The observation a N  + a, = 1 for the hull, defined by (3) combined with the observation 
that the width U of the hull scales like the correlation length 6 -  ( p c - p ) - '  leads to 
a , = v / ( l + v ) a n d t o  

in Nf- & ( L , / u ) .  With the accepted value of v = +, this gives DH = %. This result 
has been confirmed numerically both for standard percolation and for gradient percola- 
tion [12, 181 and is presumably exact [20]. It does not hold for hulls ( 3 a )  and ( 3 b )  
above as aN +a, = 1 fails in this case. In this case, DH is closer to $ rather than i. 
We now wish to calculate these exponents by way of the CA approach. 

3. A cellular automaton model for diffusing particles 

In this section, we shall propose a new approach to the problem of simulating a 
diffusion process. The main idea is to find a cellular-automaton-type algorithm which 
reproduces the simultaneous independent random walks of many particles. For sim- 
plicity and reasons of implementation, we shall restrict ourselves to the two-dimensional 
case. However, there are in principle no difficulties in generalising this algorithm to 
higher dimensions. The interest of a CA approach resides in the efficiency of the 
algorithm which takes advantages of the full parallelism of the dedicated automata 
machines. However, due to this parallel updating, the CA rules have to be constructed 
carefully in order to treat properly the fact that the particles cannot experience collisions 
or overlap. These conditions are naturally taken into account in the following very 
simple algorithm. 

Let us consider a two-dimensional square lattice on which the particles diffuse. 
There is at most one particle per site or cell. This lattice is divided into adjacent blocks, 
each containing 2 x 2  cells (see figure 2).  Those blocks are called the Margolus 
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Figure 2. Margolus neighbourhood as used in the algorithm. The arrows indicate two 
typical motions of the blocks which generate a basic diffusion step. In the next iteration, 
the blocks are shifted by one elementary step along the diagonal. 

neighbourhood [14]. The diffusion process is realised in two steps. First, the particles 
in a block are moved using three different operations conserving the number of particles 
in each block. The operations are the rt7r/2 rotations and the identity transformation. 
For each block on the lattice, an operation is chosen according to a process that mimics 
randomness and which will be described below. Secondly, the block sublattice is 
shifted by one lattice constant in both directions (see figure 2).  This step allows the 
particles to move from one block to an adjacent one. The whole process is then 
repeated and thus the particles can propagate through the system. Although the motions 
of the particles belonging to the same block are strongly correlated, the second step 
of the algorithm allows that these correlations disappear rapidly over long distances. 

The problem then is to find a reliable way for producing simultaneously an 
independent random number for each block. The idea is to use another CA rule as a 
random number generator. Our special purpose CA computer consists of the superposi- 
tion of four two-level arrays which can be coupled locally [14]. The basic idea is to 
use one array for the diffusion particles and another one for the random number 
generator. At each step of the evolution, the gas of diffusing particles is updated 
according to the rules described above, where the choice of the symmetry operation 
depends on the configuration of the adjacent cell in the random generator plane. 
Obviously, the random number generator plane is updated simultaneously. 

A simple way to construct a random number generator consists of using a lattice-gas 
model which has been tested for its ergodic properties. Thus, our random generator 
will be constructed with the help of the well-known HPP gas [19], which is here 
implemented inside a Margolus block [14]. Our HPP gas is made of particles moving 
along the diagonals of the lattice. In the Margolus implementation, the motion of a 
HPP particle depends on its location inside a block. For instance, a particle at the 
upper left comer of a block travels in the south-east direction, while a particle located 
at lower right corner moves in the opposite direction. In the same way, an upper right 
particle travels south-west, and so on. As long as a particle does not meet another 
one, it continues in a straight line. However, when exactly two particles with opposite 
velocities are simultaneously present in the same block, they undergo a collision and 
bounce at right angles. This is the collision mechanism which make a lattice gas 
suitable for simulating our local random number generator. The HPP gas has periodic 
boundary conditions in both directions. 
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Figure 3. Stationary diffusion profile comparing the simulation result with the straight line 
plot of the theoretical solution of the diffusion equation. 

P. 1 

P=O 

Figure 4. Scaling function @ ( z / i ( f ) ) .  The circles are the results of the simulation and the 
continuous curve is the theoretical prediction. For details see the text. 
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At each time, an integer number n between 0 and 15 is associated with each block. 
This number indexes the sixteen possible configurations of the HPP particles in a block. 
More precisely, they are constructed in terms of the occupation numbers of each cell 
byz, which takes the value 1 if the cell is occupied and zero otherwise. They read 

where the subscript of b indicates the location of the cell inside a block (upper left, 
upper right, lower left and lower right). 

For the HPP gas, every configuration having a given number of particles in a block 
is equiprobable. Thus, among these configurations, an equal number should give rise 
to a clockwise or counterclockwise rotation of the block of diffusive particles. For the 
binary numbers between 0 and 15, there is an even number of block configurations 
with exactly one bit equal to 1 .  Therefore, we associate a left rotation with half of 
them and a right rotation with the other half. The same is true for the numbers with 
two and three bits equal to 1 .  Therefore, one associates a + r / 2  rotation with n = 1 
and 4, and a - r / 2  rotation with 2 and 8. Similarly 3, 6, 10 and 1 1 ,  14 produce a 
clockwise rotation, while 5,  9, 12 and 7, 13 give a counterclockwise rotation. Finally, 
we choose the identity operation for 0 and 15.  

Note that by construction of the algorithm, the process is independent of the number 
of diffusing particles. On the other hand, the concentration of the HPP gas influences 
the mobility of the diffusion. Simulations with concentrations of 10, 25 and 50% have 
been performed. The final results do not depend on this parameter. 

In order to test the quality of this algorithm, we have simulated two typical diffusion 
situations for which exact analytical results exist. The first one consists of studying 
the stationary density profile produced by particles diffusing in a plane between a 
source and a sink. The presence of a source and a sink is implemented on the CA as 
follows. The top row of the lattice of diffusing particles is, at all times, completely 
filled with particles. In contrast, any particle reaching the bottom row is immediately 
absorbed. 

As shown in § 2, the analytical solution of the diffusion equation leads to a linear 
stationary density profile. This prediction can now be compared with the results of 
the simulation of our CA algorithm. The simulation has been performed on a special 
purpose computer CAM-6 [14] updating 256x256 cells simultaneously 60 times a 
second. The source consists of a horizontal line of length 256, at the position z = 0 
while the sink is a parallel line at z = L. The density at z is given by the total number 
of particles on the corresponding horizontal line, divided by 256. Moreover, an average 
has been made over 100 samples. 

The results are given in figure 3. One sees that the agreement with the theoretical 
predictions is excellent. 

The second test consists of studying the diffusion in the presence of the source 
only (at z = 0). 

The scaling prediction derived in § 2 can be compared with the results of the 
simulation. The profile P ( z ,  t )  has been measured after 16, 32, 64, 128, 256 and 512 
iterations steps. An average over ten samples has been made. The corresponding 
scaling function is plotted in figure 4. The circles are the results of the simulation 
while the continuous curve is the theoretical prediction. Again the agreement is 
excellent. 

The above results show that our CA algorithm well describes the diffusion of 
independent particles. It will be used in the next section to study the properties of 
the diffusion fronts. 

n = b,J3 + b,r22 + b,,2' + bIr2' (10) 
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4. Properties of the diffusion fronts 

An advantage of the CA approach for studying the diffusion fronts is the fact that they 
can be constructed by using an efficient CA algorithm. Explicitly, one proceeds in 
three steps. 

(i)  The ‘land’ is constructed by considering the set of diffusing particles being 
either a nearest neighbour of the source or a nearest neighbour of a point of ‘land’ 
already existing. With this rule, the land is emerging from the source under iteration. 
The implementation in terms of CA is obvious. 

(ii) The ‘ocean’ is constructed as follows. One first removes all the particles which 
do not belong to the land. Then, a point which is not land becomes ocean if it is a 
neighbour of the sink or a neighbour of an already existing ocean point. The resulting 
ocean emerges under iterations from the sink. 

(iii) The fronts H1, H2 and H3 are constructed as follows. 
H1: The ocean is made of nearest- and next-nearest neighbours. The front is made 

of the land points, which are first- or second-nearest neighbours of the ocean. 
H2: The ocean is made of nearest neighbours. The front is made of the land points 

which are first- or second-nearest neighbours of the ocean. 
H3: The ocean is made of nearest neighbours with the additional restriction that 

the ocean particles cannot enter a channel whose width is one lattice spacing. The 
front is made of the land points which are first-nearest neighbours of the ocean. 

These definitions were guided by some implementation restrictions. They are 
essentially equivalent to the definitions in 9 2. 

As seen in 0 2, the number of particles Nf composing the diffusion fronts depends 
on their average widths U, according to 

N~ = A ~ ~ H - ~  (11) 

where A is some amplitude and DH is the fractal dimension of the front. 
Our interest was to determine the values of DH for the three different constructions 

of the fronts. The values of Nf and U were measured for different fronts obtained 
after letting the particles diffuse during 194, 388, 776, 1512 and 3024 evolution steps. 
Moreover, for each of the five times, averages over ten samples were performed. Note 
that for all these times, the sink is still far away from the front. The three types of 
fronts are shown in figure 5, for the same diffusion experiment. 

The value of (T was obtained using equation (8). During the time evolution, the 
number Nf of particles in the front and its width U increase. Thus, using the data 
obtained for different times, one can extract the value of DH from equation (11). It 
turns out that the plot of log Nf against log (T satisfies a linear relation quite well. 

The measurements for the three different cases discussed above give the following 
values of DH: 

(i)  DH1 = 1.743*0.012 
(ii) DH2 = 1.420 * 0.020 
(iii) DH3 = 1.329 * 0.020. 
The first value agrees with the theoretical prediction [7] relating DH1 to the 

correlation length exponent for percolation problem, i.e. DEl = 1.75. The third value 
corresponds quite well also with other numerical simulations [ 121 and theoretical 
conjectures [20], i.e. D& = !. As far as the second case is concerned, the situation is 
not so clear. Indeed, according to some conjectures, the value of DH2 should be the 
same as DH3. However, this statement is true only in the limit of zero gradient. For 
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Figure 5. The three different diffusion fronts for the same diffusion experiment. The 
different fractals show up explicitly in these diagrams. 

a stationary state, it corresponds to an infinite distance between the sink and the source. 
This is obviously not the case in our experiment and thus one should expect corrections 
to scaling due to finite-size effects. 

Another property of the front which has been investigated, is the density p of 
diffusing particles at the mean position of the front zf. It has been verified [7] that 
for the first type of front, p ( z f )  is equal to the percolation threshold pc of the 
two-dimensional site percolation problem, namely p c  = 0.5928 [ 101. The value of p (  zf) 
has been measured in the stationary state for ten samples and two different concentration 
gradients. For a sink-source separation of 208 lattice constants, we found p(zf) = 
0.6013, while, for a separation of 256, we obtained p(zf) = 0.5945, in the stationary 
limit. These results should be compared with the best available value pc = 0.592 745 
[9]. Although the general tendency is correct, our statistics is not good enough to 
extract the infinite-separation limit. 

5. Conclusion 

In the present study the feasibility of implementing inhomogeneous diffusion by a 
cellular automata algorithm on a special purpose computer has been tested. The 
parallel updating of the diffusion process has been tailored for the CAM-6 parallel 
processing machine by modifying the elementary diffusion steps. The results indicate 
that neither the parallelism nor the modified elementary diffusion steps influence the 
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results. Both the out-of-equilibrium diffusion profile and the percolation characteristics 
of the diffusion front agree with exact results and with numerical results obtained from 
homogeneous percolation. The only sign of a difference in comparison with serial 
Monte Carlo simulations is the occasional appearance of transients close to the steady 
state. The detailed investigation of this effect and the possible origins of it would be 
an interesting topic for further work. 
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